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Parametric Rao Tests for Multichannel Adaptive
Detection in Partially Homogeneous Environment
Pu Wang, Student Member, IEEE, Hongbin Li, Senior Member, IEEE, and Braham Himed, Fellow, IEEE

Abstract— This paper considers the problem of detecting
a multichannel signal in partially homogeneous environments,
where the disturbances in both test signal and training signals
share the same covariance matrix up to an unknown power scal-
ing factor. Two different parametric Rao tests, referred to as the
normalized parametric Rao (NPRao) test and the scale-invariant
parametric Rao (SI-PRao) test, respectively, are developed by
modeling the disturbance as a multichannel autoregressive (AR)
process. The NPRao and SI-PRao tests entail reduced train-
ing requirement and computational efficiency, compared with
conventional fully adaptive, covariance matrix based solutions.
The SI-PRao test attains asymptotically a constant false alarm
rate (CFAR) that is independent of the covariance matrix and
power scaling factor of the disturbance. Comparisons with the
covariance matrix based, scale-invariant generalized likelihood
ratio test (GLRT), also known as the adaptive coherent estimator
(ACE), are included. Numerical results show that the parametric
Rao detectors, in particular the SI-PRao test, attain considerably
better detection performance and use significantly less training
than the ACE detector.

Index Terms— Rao test, parametric models, partially homo-
geneous environment, multichannel signal detection, space-time
adaptive signal processing.

I. INTRODUCTION

Multichannel adaptive detection is encountered in numerous
applications including radar [1], [2], wireless communications
[3], hyperspectral imaging [4], [5], and others. Space-time
adaptive processing (STAP)-based multichannel adaptive de-
tection has been successfully utilized to mitigate the effect
of clutter and/or interference in radar, remote sensing, and
communication systems [1]–[5].

Traditional STAP detectors are developed usually for homo-
geneous environments, where the disturbances in both the test
and training signals are assumed to be independent and iden-
tically distributed (i.i.d.). Examples include the Reed, Mallet,
and Brennan detector [6], Kelly’s generalized likelihood ratio
test (GLRT) [7], the adaptive matched filter (AMF) detector
[8], [9], Rao test [10], among others. For the above STAP
detectors, estimation of the space-time covariance matrix from
training signals requires a large number of training signals
and excessive computation power, especially when the joint
space-time dimension is large. To alleviate these problems,
parametric STAP detectors have been developed by modeling
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the disturbance as a multichannel autoregressive (AR) process,
such as the parametric AMF (PAMF) [11], parametric Rao test
[12], and parametric GLRT [13].

In this paper, we consider multichannel signal detection
in partially homogeneous environments, where the test signal
shares the same covariance matrix with the training signals up
to an unknown power scaling factor under the null hypoth-
esis [14]–[17]. This scenario is motivated by the following
observation: A number of guard cells used in the STAP
implementation to separate the test signal and training signals
may lead to a power difference between the test and training
signals. Specifically, the training signals over range cells are
assumed to be i.i.d. CN (0,R) which denotes a complex
Gaussian distribution with zero mean and covariance matrix
R, while the disturbance in the test signal is independent
with the training signals with distribution CN (0, λR), where
λ denotes the unknown power scaling factor. Depending on
a priori knowledge about the power scaling factor λ, or
the covariance matrix R, or both, non-adaptive and adap-
tive STAP detectors have been developed in [15]–[18]. The
scale-invariant GLRT, which is also known as the adaptive
coherence estimator (ACE), is first introduced in [18] for the
compound Gaussian environment and also developed in [16]
for the partially homogeneous environment. It is shown that
the ACE coincides with the Rao and Wald tests in the partially
homogeneous environment [17], which is also a constant false
alarm rate (CFAR) detector. As a covariance matrix based
STAP detector, the ACE needs to estimate the covariance
matrix from the target-free training signals which entails large
training requirement, and to invert the covariance matrix for
implementation also leads to a high computational complexity.
At a minimum, K ≥ JN i.i.d. training signals are needed to
ensure a full-rank estimate of the JN×JN covariance matrix
R, where J denotes the number of spatial channels and N the
number of temporal observations. For example, the KASSPER
dataset consists of J = 11 spatial channels and N = 32
coherent pulses for a total of JN = 352 spatial-temporal
dimension. Such a demanding training requirement usually
cannot be met in practice. It also makes the homogeneous
(i.e., i.i.d.) assumption across such a broad range of training
cells impractical.

To address this issue, we take an approach where the distur-
bance in the partially homogeneous environment is modeled
by a multichannel AR process. This modification results in
a parametric STAP detector which requires a relaxed local
homogeneous assumption for the training signals: that is, the
training signals are assumed to be i.i.d. over a small duration,
as opposed to the excessive homogeneous training signals
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required by the ACE. The local homogeneous assumption is
reasonable because the effect of clutter variation across a small
area is generally negligible. In the compound Gaussian model
[18]–[23], it is often assumed that the texture component
is slow varying, which is similar to the local homogeneous
assumption.

In this paper, parametric detection by using the Rao prin-
ciple is considered for the partially homogeneous environ-
ment. The first parametric Rao test, which is referred to the
normalized parametric Rao (NPRao) test, is developed in a
heuristic way. Specifically, it first assumes the knowledge of
the power scaling factor, applies the Rao principle and obtains
a Rao test that depends on the power scaling factor, and finally
replaces the unknown power scaling factor by some estimate.
The second Rao test, referred to the scale-invariant parametric
Rao (SI-PRao) test, is developed by applying the Rao principle
with the joint maximum likelihood (ML) estimates of all
unknown parameters in the null hypothesis. The asymptotical
distribution of the SI-PRao test is derived in closed form. It is
shown that the SI-PRao test is asymptotically independent of
the unknown parameters in the null hypothesis, which results
in the property of CFAR. Comparisons between the ACE
detector show that our parametric Rao tests in the partially
homogeneous environment exhibit improved detection perfor-
mance when the training signals are limited, i.e., when K
is too small to yield a reliable estimate of the space-time
covariance matrix R that is required by the ACE detector.

The rest of this paper is organized as follows. Section II
contains the data model and problem statement. Prior solutions
to the problem of interest are briefly reviewed in Section III.
The NPRao and SI-PRao tests are developed and summarized
in Section IV. Asymptotical performance of the SI-PRao
detector is also included in this section. Numerical results
are presented in Section V. Finally, Section VI contains the
concluding remarks.

II. DATA MODEL AND PROBLEM STATEMENT

A. Data Model

Consider the problem of detecting a known multichannel
signal with unknown amplitude in the presence of spatially
and temporally correlated disturbance: (e.g., [1]):

H0 : x0(n) = d0(n), n = 0, 1, · · · , N − 1
H1 : x0(n) = αs(n) + d0(n), n = 0, 1, · · · , N − 1

(1)

where all vectors are J × 1 vectors, J denotes the number
of spatial channels, and N is the number of temporal obser-
vations. In the sequel, x0(n) is referred to as the test signal,
s(n) is the signal to be detected with amplitude α, and d0(n)
is the disturbance signal that may be correlated in space and
time. Besides the test signal x0(n), there may be a set of
training signals xk(n), k = 1, 2, · · · , K , to assist in the signal
detection:

xk(n) = dk(n), n = 0, 1, · · · , N − 1. (2)

In radar systems, training signals may be obtained from range
cells adjacent to the test cell. However, training signal is

generally limited or may even be unavailable. In the extreme
training-free case, we have K = 0.

Define the following JN × 1 space-time vectors:

s =
[
sT (0), sT (1), · · · , sT (N − 1)

]T
,

dk =
[
dT

k (0),dT
k (1), · · · ,dT

k (N − 1)
]T

,

xk =
[
xT

k (0),xT
k (1), · · · ,xT

k (N − 1)
]T

,

where k = 0, 1, · · · , K . It follows that (1) can be rewritten in
a compact form

H0 : x0 = d0

H1 : x0 = αs + d0.
(3)

The binary composite hypothesis testing problem is to select
between H0 : α = 0 and H1 : α �= 0.

The general assumptions for the STAP in partially homo-
geneous environment are [15]–[17], [24], [25]:

• AS1: The signal vector s is deterministic and known to
the detector;

• AS2: The signal amplitude α is complex-valued, deter-
ministic, and unknown;

• AS3: The disturbance signals d0 and {dk}K
k=1 are

mutually independent with distribution CN (0, λR) and
CN (0,R), respectively, where λ > 0 is an unknown
power scaling factor.

If λ = 1, the partially homogeneous environment reduces
to the homogeneous case. In this paper, a multichannel AR
process is employed to model the disturbance and the AS3 is
modified as follows

• AS3′: The disturbance signal dk(n), k = 0, . . . , K , can
be modeled as a J-channel AR(P ) process with model
order P :

dk(n) = −∑P
i=1 AH(i)dk(n − i) + εk(n), (4)

where {AH(i)}P
i=1 denote the unknown J × J AR

coefficient matrices, εk(n) denote the J ×1 spatial noise
vectors that are temporally white but spatially colored:
ε0(n) ∼ CN (0, λQ) and {εk(n)}K

k=1 ∼ CN (0,Q),
respectively, where λ is the unknown power scaling factor,
and Q denotes the unknown J × J spatial covariance
matrix.

Note that the power scaling factor λ on the spatial covariance
matrix ensures the same power scaling factor on the spatial-
temporal covariance matrix. The problem of interest here is
to develop a decision rule for the above composite hypothesis
testing problem based on assumptions AS1, AS2, and AS3 ′.

III. PRIOR SOLUTIONS

Depending on the amount of a prior knowledge about the
unknown parameters, a number of solutions for the STAP
detection in partially homogeneous environments have been
proposed. If the space-time covariance matrix R and the power
scaling factor λ are both known exactly, the optimal detector
is the phase invariant matched filter (PIMF) [20], [25]

TPIMF =

∣∣sHR−1x0

∣∣2
λsHR−1s

H1

≷
H0

γPIMF, (5)
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where γPIMF denotes the PIMF threshold subject to a selected
probability of false alarm. In the case of unknown λ, the
normalized match filter (NMF) replaces λ with an estimate,
which is given by

TNMF =

∣∣sHR−1x0

∣∣2
(sHR−1s)

(
xH

0 R−1x0

) H1

≷
H0

γNMF, (6)

where γNMF denotes the NMF threshold. It should be noted
that both the non-adaptive PIMF and NMF detectors cannot
be implemented in practice since R is unknown, but they can
be used as a baseline for performance comparison.

Adaptive detectors are formulated by estimating the covari-
ance matrix R from the target-free training signals

R̂ =
1
K

K∑
k=1

xkxH
k . (7)

The normalized adaptive matched filter (NAMF) [18], also
known as the adaptive coherence estimator (ACE) [15], is

TACE =

∣∣∣sHR̂−1x0

∣∣∣2(
sHR̂−1s

)(
xH

0 R̂−1x0

) H1

≷
H0

γACE, (8)

where γACE denotes the ACE threshold. It is shown that the
ACE is equivalent to the scale-invariant GLRT in the partially
homogeneous environment [15].

By utilizing a multichannel AR model, the normalized
parametric adaptive matched filter (NPAMF) is reported [20],
[21], [26]:

TNPAMF = ∣∣∣∣N−1∑
n=P

ˆ̃s
H

P (n)Q̂−1
P

ˆ̃x0,P (n)
∣∣∣∣
2

(
N−1∑
n=P

ˆ̃s
H

P (n)Q̂−1
P

ˆ̃sP (n)
)(

N−1∑
n=P

ˆ̃x
H
0,P(n)Q̂−1

P
ˆ̃x0,P (n)

)
H1

≷
H0

γNPAMF, (9)

where γNPAMF denotes the NPAMF threshold, Q̂P denotes an
estimate of the spatial covariance matrix Q, ˆ̃x0,P (n) and ˆ̃sP (n)
are the temporally whitened test and steering vector, respec-
tively. The NPAMF is originally developed as a solution for
detection in the compound-Gaussian environment [20], [21];
it can also be used in the partially homogeneous environment.

IV. PARAMETRIC RAO TEST

IN PARTIALLY HOMOGENEOUS ENVIRONMENT

In this section, two parametric Rao detectors based on
assumptions AS1, AS2, and AS3′ are developed. The NPRao
test is developed in a manner similar to the NPAMF, while
the SI-PRao test is derived by finding the ML estimates of all
nuisance parameters under the null hypothesis.

A. Normalized Parametric Rao Test

The NPRao test is a heuristic detector obtained via a two-
step approach. First, by assuming that the power scaling
parameter λ is known, a Rao test can be obtained by finding
the ML estimates of the AR coefficient matrices {AH(p)}
and spatial covariance matrix Q. The derivation is similar to
the Rao test in [12] for a homogeneous environment. Hence,
we skip the details and just present the final result. The new
detector, conditioned on a known λ, is given by

TPRao =
2

∣∣∣∣N−1∑
n=P

ˆ̃s
H

(n)Q̂−1 ˆ̃x0 (n)
∣∣∣∣
2

λ

(
N−1∑
n=P

ˆ̃s
H

(n)Q̂−1ˆ̃s (n)
) , (10)

where ˆ̃s and ˆ̃x0 are the temporally whitened steering vector
and test signal, respectively, by using a set of estimates
{ÂH(p)} of the AR coefficient matrices:

ˆ̃s (n) =s (n) +
P∑

p=1

ÂH (p)s (n − p) , (11)

ˆ̃x0 (n) =x0 (n) +
P∑

p=1

ÂH (p)x0 (n − p) , (12)

where ÂH =
[
ÂH (1) , ÂH (2) , · · · , ÂH (P )

]
is given by

[12]:

ÂH = −R̂H
yxR̂

−1
yy . (13)

The Q̂ in (10) is an estimate of the spatial covariance matrix
Q [12]:

Q̂ =
1
L

(
R̂xx − R̂H

yxR̂
−1
yy R̂yx

)
, (14)

where L = (K + 1)(N − P ) and

R̂xx =
K∑

k=0

N−1∑
n=P

xk (n)xH
k (n), (15)

R̂yy =
K∑

k=0

N−1∑
n=P

yk (n)yH
k (n), (16)

R̂yx =
K∑

k=0

N−1∑
n=P

yk (n)xH
k (n), (17)

and yk(n) =
[
xT

k (n − 1), . . . , xT
k (n − P )

]T ∈ CJP×1, k =
0, . . . , K .

Second, we replace the power scaling factor λ in (10) by
some estimate. One candidate is given by [20], [21] (also see
(9))

λ̂ =
N−1∑
n=P

ˆ̃x
H

0 (n)Q̂−1 ˆ̃x0 (n). (18)
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This leads to our NPRao detector given by

TNPRao =
2

∣∣∣∣N−1∑
n=P

ˆ̃s
H

(n)Q̂−1 ˆ̃x0 (n)
∣∣∣∣
2

(
N−1∑
n=P

ˆ̃s
H

(n)Q̂−1ˆ̃s (n)
) (

N−1∑
n=P

ˆ̃x
H

0 (n)Q̂−1 ˆ̃x0 (n)
)

H1

≷
H0

γNPRao, (19)

where γNPRao denotes the NPRao test threshold.

It is noted that the NPAMF detector is equivalent to the
NPRao test with one exception: while the NPAMF detector
uses only training signals for parameter estimation, the NPRao
detector uses both training and test signals for estimation. The
difference is similar to the one discussed in [12] between the
PAMF detector and the parametric Rao detector.

B. Scale-Invariant Parametric Rao Test

The heuristic NPRao test cannot ensure the invariance to
the power scaling factor, which is needed for effective clutter
mitigation in the partially homogeneous environment [15],
[16]. To this end, a parametric Rao test by evaluating the ML
estimates of all nuisance parameters including λ, A and Q
is developed and the resulting detector, the SI-PRao test, is
shown to be invariant to the power scaling factor.

Specifically, as shown in Appendix, the SI-PRao test is
given by

TSI-PRao =
2

∣∣∣∣N−1∑
n=P

ˆ̃s
H

(
n; λ̂

)
Q̂−1

(
λ̂
)

ˆ̃x0

(
n; λ̂

)∣∣∣∣
2

λ̂
N−1∑
n=P

ˆ̃s
H

(
n; λ̂

)
Q̂−1

(
λ̂
)

ˆ̃s
(
n; λ̂

)
H1

≷
H0

γSI-PRao, (20)

The λ̂ in (20) is the ML estimate of λ, which is obtained by
solving the following equation:

J

K + 1
−

J(P+1)∑
i=1

1
1 + λμi

+
JP∑
i=1

1
1 + λvi

= 0, (21)

where {μi}J(P+1)
i=1 and {νi}JP

i=1 are the eigenvalues of the

0 2 4 6 8 10 12 14 16 18
−1.5

−1

−0.5

0

0.5

1

λ

f(
λ)

J=4

K=1, N=16, P=1, SINR=20dB
K=1, N=16, P=1, SINR=0dB
K=2, N=32, P=2, SINR=20dB
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K=8, N=64, P=3, SINR=0dB

Fig. 1. Numerical evaluation of f(λ) for several sets of system parameters
when J = 4 and λ = 4

matrices R̂− 1
2

0 R̂KR̂− 1
2

0 and R̂− 1
2

0,y R̂K,yR̂
− 1

2
0,y , respectively, and

R̂0 =

⎡
⎢⎢⎣

N−1∑
n=P

y0 (n)yH
0 (n)

N−1∑
n=P

y0 (n)xH
0 (n)

N−1∑
n=P

x0 (n)yH
0 (n)

N−1∑
n=P

x0 (n)xH
0 (n)

⎤
⎥⎥⎦ ,

(22)

R̂K =

⎡
⎢⎢⎣

K∑
k=1

N−1∑
n=P

yk (n)yH
k (n)

K∑
k=1

N−1∑
n=P

yk (n)xH
k (n)

K∑
k=1

N−1∑
n=P

xk (n)yH
k (n)

K∑
k=1

N−1∑
n=P

xk (n)xH
k (n)

⎤
⎥⎥⎦ ,

(23)

R̂0,y =
N−1∑
n=P

y0 (n)yH
0 (n), (24)

R̂K,y =
K∑

k=1

N−1∑
n=P

yk (n)yH
k (n). (25)

Remark: The existence of a non-negative solution λ̂ to

(21) is guaranteed. To see this, note that R̂− 1
2

0 R̂KR̂− 1
2

0 and

R̂− 1
2

0,y R̂K,yR̂
− 1

2
0,y are positive definite. Therefore, μi and νi are

positive. The function

f(λ) =
J

K + 1
−

J(P+1)∑
i=1

1
1 + λμi

+
JP∑
i=1

1
1 + λvi

(26)

is a continuous function on (0, +∞). When K > 0, i.e., at
least one training signal is available, we have

lim
λ→0

f(λ) =
J

K + 1
− J < 0, (27)

lim
λ→∞

f(λ) =
J

K + 1
> 0, (28)

which implies that there is at least one λ within in the interval
(0, +∞) giving f(λ) = 0. On the other hand, the uniqueness
of the ML estimate of λ is more difficult to establish due
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to the nonlinear dependence on the parameters μ i and νi.
Numerical examples suggest that the solution is unique. For
illustration purpose, Figure 1 shows the numerical evaluation
of f(λ) for several sets of system parameters. It is seen that
the function f(λ) is a monotonically increasing function over
λ ∈ (0, +∞), which, combining with (27) and (28), suggests
that the solution is unique. However, a more rigorous proof is
not available.

Once the ML estimate of λ, the temporally whitened steer-
ing vector ˆ̃s(n; λ̂) and test signal ˆ̃x0(n; λ̂) in (20) are obtained
from (11) and (12) with the following ML estimate of A

ÂH = −R̂H
yx

(
λ̂
)
R̂−1

yy

(
λ̂
)

. (29)

Finally, Q̂(λ̂) in (20), the ML estimate of Q, is given by

Q̂
(
λ̂
)

=
1
L

(
R̂xx(λ̂) − R̂H

yx(λ̂)R̂−1
yy (λ̂)R̂yx(λ̂)

)
, (30)

where

R̂xx(λ̂) = λ̂−1
N−1∑
n=P

x0 (n)xH
0 (n) +

K∑
k=1

N−1∑
n=P

xk (n)xH
k (n),

(31)

R̂yy(λ̂) = λ̂−1
N−1∑
n=P

y0 (n)yH
0 (n) +

K∑
k=1

N−1∑
n=P

yk (n)yH
k (n),

(32)

R̂yx(λ̂) = λ̂−1
N−1∑
n=P

y0 (n)xH
0 (n) +

K∑
k=1

N−1∑
n=P

yk (n)xH
k (n).

(33)

C. Asymptotic Detection Performance

According to [27], the asymptotic distribution of the Rao
test statistics can be obtained as

TSI-PRao
a∼

{
χ2

2, under H0

χ
′2
2 (ρ) , under H1

, (34)

where χ2
2 denotes the central Chi-squared distribution with 2

degrees of freedom and χ
′2
2 (ρ) the noncentral Chi-squared

distribution with 2 degrees of freedom and noncentrality
parameter ρ

ρ =
2 |α|2

N−1∑
n=P

s̃H (n)Q−1s̃ (n)

λ
, (35)

where s̃ is the temporally whitened steering vector given by
(11) but with Â replaced by the true AR coefficient matrix
A. From (35), it is ready to show that, for a given threshold,
the probability of false alarm is

Pf = exp
(
−γSI-PRao

2

)
, (36)

which shows that the statistic of the SI-PRao test under H0 is
independent of the power scaling factor and the covariance
matrix, and further implies the SI-PRao test is a CFAR
detector, while the probability of detection is

Pd =
∫ ∞

γSI-PRao

1
2

exp
(
−x + ρ

2

)
I0 (

√
ρx) dx, (37)

where I0 (x) is the modified Bessel function of the first kind
and zeroth order.
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Fig. 2. Probability of detection versus SINR when Pd = 0.01, J = 4,
N = 32, K = 2, and λ = 4.

V. NUMERICAL EXAMPLES

We now report simulation results for the proposed detectors.
Throughout this section, the disturbance signal is generated
as a multichannel AR(2) process with AR coefficient A and
a spatial covariance matrix Q. These parameters are set to
ensure that the AR process is stable and Q is a valid covariance
matrix, but otherwise are randomly selected. The signal vector
s corresponds to a uniform equispaced linear array with J = 4
antenna elements, N temporal pulses, and randomly selected
normalized spatial frequency ωs and Doppler frequency ωd.
The steering vector is given by

s = st(ωd) ⊗ ss(ωs), (38)

where st(ωd) denotes the N × 1 temporal steering vector

st(ωd) =
1√
N

[1, ejωd , · · · , ej(N−1)ωd ]T , (39)

and ss(ωs) denotes the J × 1 spatial steering vector

ss(ωs) =
1√
J

[1, ejωs , · · · , ej(J−1)ωs ]T . (40)

The signal-to-interference-plus-noise ratio (SINR) is defined
as

SINR = |α|2sHR−1s, (41)

where the JN × JN covariance matrix R can be uniquely
determined once A and Q are selected.

Numerical simulations are provided for various values of
K , N , and λ when J = 4 and P = 2. In particular, we
consider two distinct cases: 1) the limited-training case, e.g.,
K = 2 and K = 4; and 2) the asymptotic case, e.g., K = 64.
The simulation results are shown in terms of the probability of
detection versus SINR when the probability of false alarm is
fixed as Pf = 0.01. In each case, the optimum but non-adaptive
PIMF detector (5), whose Pd and Pf can be determined
analytically [16], is included as a benchmark (note that the
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Fig. 3. Probability of detection versus SINR when Pd = 0.01, J = 4,
N = 32, K = 2, and λ = 8.
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Fig. 4. Probability of detection versus SINR when Pd = 0.01, J = 4,
N = 16, K = 4, and λ = 4.

PIMF is a clairvoyant detector that has full knowledge of all
unknown parameters). The ACE detector, whose performance
can also be determined analytically (see [16], [28]), is also
included to show how the parametric detectors compare with
this popular covariance matrix based detector in partially non-
homogeneous environments. Since the ACE detector needs a
full-rank space-time covariance matrix estimate, we assumes it
has sufficiently i.i.d. training signals with K = 2JN . Finally,
we include the simulated results for the proposed NPRao and
SI-PRao detectors; for the latter, we also include its asymptotic
performance as shown in Section IV-C.
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Fig. 5. Probability of detection versus SINR when Pd = 0.01, J = 4,
N = 16, K = 4, and λ = 8.
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Fig. 6. Comparison of SINR loss of the SI-PRao detector with respect to the
PIMF in cases of Pf = {0.1, 0.01, 0.001}when J = 4, N = 32, K = 2,
P = 2, and λ = 4.

A. Limited-Training Case

In this case, we first consider two scenarios: 1) K = 2
and N = 32, where the training signals are limited and the
number of temporal samples is moderate; 2) K = 4 and
N = 16, where we have slightly more training signals but
the temporal samples are limited. For K = 2 and N = 32,
Figs. 2 and 3 show the probability of detection versus SINR
when λ = 4 and λ = 8, respectively. It is seen that, for a small
value of λ = 4, the NPRao and SI-PRao tests with K = 2
generally outperform the ACE detector with K = 256. For a
larger value of λ = 8 as shown in Fig. 3, the SI-PRao test
behaves similarly to the PIMF, while the NPRao test degrades
considerably, indicating that it is not invariant to the power
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Fig. 7. Comparison of SINR loss of the NPRao detector with respect to the
PIMF in cases of Pf = {0.1, 0.01, 0.001}when J = 4, N = 32, K = 2,
P = 2, and λ = 4.
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Fig. 8. Probability of detection versus SINR when Pd = 0.01, J = 4,
N = 16, K = 64, and λ = 4.

scaling factor λ.
In the second case with K = 4 and N = 16, the simulation

results are plotted in Figs. 4 and 5, respectively, for λ = 4
and λ = 8. It is seen that, the SI-PRao test yields the best
performance among the adaptive detectors. Both the SI-PRao
test and ACE detector are seen to be invariant to the power
scaling factor. However, the NPRao test shows much worse
detection performance than the SI-PRao test and the ACE
detectors for both λ = 4 and λ = 8.

We next examine the SINR loss of the proposed Rao
detectors with respect to the PIMF in cases of different proba-
bilities of false alarm. The results of the SI-PRao and NPRao
detectors are shown in Fig. 6 and Fig. 7, respectively, when
several probabilities of false alarm Pf = {0.1, 0.01, 0.001}
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Fig. 9. Probability of detection versus SINR when Pd = 0.01, J = 4,
N = 16, K = 64, and λ = 8.
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Fig. 10. Effect of the number of pulses on the detection performance of the
SI-PRao detector when Pf = 0.01, J = 4, K = 2, P = 2 and λ = 4.

are considered. It is noticed that, for a given probability of
detection, both Rao detectors show a larger SINR loss with
respect to the PIMF when the probability of false alarm is
smaller. However, the performance loss of the SI-PRao test is
generally smaller than the NPRao test in all three cases.

B. Asymptotic Case

An asymptotic scenario with large K is simulated to verify
the asymptotic performance of the SI-PRao test derived in
Section IV-C. The simulation parameters are J = 4, N = 16,
P = 2, and K = JN = 64. The results are shown in Figs. 8
and 9 with λ = 4 and λ = 8, respectively. It is seen that,
the probability of detection obtained by simulation approaches
the asymptotic performance of the SI-PRao test in both cases.
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Fig. 11. Probability of detection versus SINR when model order of
multichannel AR process used for computing test statistic is true (P = 2),
overestimated (assuming P = 3), and underestimated (assuming P = 1),
when Pf = 0.01, J = 4, N = 32, K = 8, and λ = 4.

Also, with a plenty of training signals, the NPRao test provides
detection performance almost identical to that of the SI-PRao
test. The performance of the ACE detector with K = 128,
which is twice as that of the Rao tests, is also included for
comparison.

It is also interesting to show the impact of the sample
size, i.e., the number of pulses number N , on the detection
performance. The results are shown in Fig. 10, where the
detection probability of the SI-PRao detector converges as
N increases and approaches the asymptotic performance. The
NPRao detector has a similar behavior, which is not shown
for space limitation.

C. Effect of Model Mismatch

The above simulation examples are based on two assump-
tions: 1) the model order is known; 2) the disturbance is
exactly a multichannel AR process. In this section, we evaluate
the detection performance of the proposed Rao detectors when
these assumptions are not met.

We first consider the case when the disturbance is an AR
process, but there is an model estimation error. In practice,
one needs to estimate the model order P of the multichannel
AR before application of the SI-PRao and NPRao detectors. A
model order estimation procedure may yield a small estimation
error. Fig. 11 depicts the detection performance of the SI-PRao
detector when the model order is under- and over-estimated,
respectively. It is seen that the order mismatch causes some
performance degradation. However, in both cases, the degrada-
tion is not significant. It is also seen that overestimation of the
model order has a smaller effect on the detection performance
than underestimation. This behavior is similar to the case of
the standard parametric Rao test in [12].

Next, we consider the case when the disturbance is not a
multichannel AR process. To show the detection performance
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Fig. 12. Probability of detection versus SINR for for the KASSPER dataset
when Pf = 0.01, J = 11, N = 32, K = 8, P = 1 and λ = 4.

in a more realistic environment, we use the KASSPER dataset,
which contains many challenging real-world effects, including
heterogeneous terrain, array errors, and dense ground targets
(see [29] for a detailed description of the KASSPER dataset).

Fig. 12 shows the probability of detection versus SINR for
the KASSPER dataset when Pf = 0.01, J = 11, N = 32,
K = 8, P = 1 and λ = 4. The covariance matrix of the test
signal corresponds to range cell r200, whereas the covariance
matrices of two (K = 2) training signals are from range
cells r197 and r203, i.e., with two guard cells between the
test cell and training cells. This scenario includes some non-
homogeneous effect since the covariance matrices for the test
and training cells are different. As shown in Fig. 12, with
two training signals and by modeling the disturbance as an
AR(1) process, the SI-PRao and NPRao detectors achieve a
close performance that is only 2 to 3 dB away from the PIMF
detector.

VI. CONCLUSION

The multichannel adaptive detection in the partially ho-
mogeneous environment by modeling the disturbance as a
multichannel AR process has been addressed. Two parametric
Rao tests have been developed to relieve the excessive training
requirement and reduce the computational complexity of the
ACE detector, when the spatial-temporal dimension is large.
The test statistic of the SI-PRao test has been asymptotically
verified to be independent of the unknown parameters under
the null hypothesis, which asymptotically achieves the con-
stant false alarm rate. Numerical results verify that the SI-
PRao test shows better performance than the NPRao test and
the ACE when the training signals are limited.

APPENDIX

In order to facilitate the derivation of the SI-PRao test, we
define the following notations
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• θr = [αR, αI,]
T = [	{α} ,
{α}]T denotes the sig-

nal parameter vector, where 	 and 
 denote the real
and imaginary parts, respectively. The joint probability
density function (pdf) under H0 and the pdf under H1

differ only in the value of θr, where θr0 = [0, 0]T and
θr1 = [αR, αI ]

T ;
• θs =

[
λ,qT

R,qT
I , aT

R, aT
I

]T
denotes the nuisance pa-

rameter vector with aT
R = vec

(	{
AH

})
, aT

I =
vec

(
{
AH

})
, qT

R contains the diagonal elements in Q
and the real part of the elements below the diagonal, while
qT

I contains the imaginary part of the elements below the
diagonal;

• θ =
[
θT

r , θT
s

]T

contains all unknown parameters;

• θ̃ =
[
θT

r0
, θ̂

T

s0

]T

denotes the ML estimate of θ under
H0.

The Rao test is a general solution to a class of parameter
testing problems. It is often simpler than the GLRT, and is also
asymptotically equivalent to the latter. A detailed discussion
on the attributes of a generic Rao test can be found in [27].
The general Rao test can be expressed as [27]

∂ ln f (θ)
∂θr

∣∣T
θ=θ̃

[
I−1

(
θ̃
)]

θr ,θr

∂ ln f (θ)
∂θr

∣∣
θ=θ̃

, (42)

where[
I−1 (θ)

]
θr ,θr

=
(
Iθr,θr (θ) − Iθr,θs (θ) I−1

θs,θs
(θ) Iθs,θr (θ)

)−1

, (43)

which is related to the Fisher information matrix (FIM) [27]

I (θ) =
[

Iθr,θr (θ) Iθr ,θs (θ)
Iθs,θr (θ) Iθs,θs (θ).

]
(44)

Under both hypothesis, the joint pdf of the test signal and
training signal can be written as

f (θ) =

[
λ− J

K+1

πJ |Q| exp
{− tr

(
Q−1T(λ,A)

)}](K+1)(N−P)

,

(45)

where

T(λ,A) =

1
λ

N−1∑
n=P

ε0 (n) ε0
H (n) +

K∑
k=1

N−1∑
n=P

εk (n) εH
k (n)

(K + 1) (N − P )
,

(46)

ε0 (n) =x̃0 (n) − αs̃ (n) , (47)

εk (n) =xk (n) +
P∑

p=1

AH (p)xk (n − p) . (48)

with

x̃0 (n) =x0 (n) +
P∑

p=1

AH (p)x0 (n − p) , (49)

s̃ (n) =s (n) +
P∑

p=1

AH (p) s (n − p). (50)

(45) gives the pdf under H0 by setting α = 0 and the pdf
under H1 for α �= 0.

From (42), the derivation of the SI-PRao test is a two-
step process. The first one is to obtain the ML estimates of
the nuisance parameters under H0, and the second one is to
evaluate the related terms in (42).

A. ML Estimation Under H0

From (45), the joint pdf under H0 is f(θ) with α = 0. By
taking the derivative of the log likelihood ln f(θ) with α = 0
with respect to (w.r.t.) Q and equating it to zero results in the
ML estimate of Q as

Q̂ML (λ,A) = T (λ,A), (51)

where T (λ,A) is given in (46) with α = 0. Substituting
Q̂ML (λ,A) into ln f(θ) under H0 yields

f
(
λ,A, Q̂ML

)
=

[
(eπ)−J

λ
J

K+1 |T (λ,A)|

](K+1)(N−P )

, (52)

The ML estimate of A is obtained by minimizing |T (λ,A)|.
Note that (K + 1) (N − P )T (λ, A) can be rewritten as

(K + 1) (N − P )T (λ, A)

= R̂xx (λ) + R̂H
yx (λ)A + AHR̂yx (λ) + AHR̂yy (λ)A.

It can be shown that [12]

T (λ,A) ≥ T (λ,A)
∣∣
A=Â , (53)

where

ÂH(λ) = −R̂H
yx (λ) R̂−1

yy (λ) (54)

and R̂xx(λ), R̂yy(λ) and R̂yx(λ) are given by (31), (32) and
(33), respectively.

Substituting ÂH(λ) into the log likelihood ln f(θ) and
ignoring the terms independent of λ yield

− ln f
(
λ, Â, Q̂ML

)
∝ J

K + 1
ln λ + ln

∣∣∣T(
λ, Â

)∣∣∣ , (55)

where∣∣∣T(
λ, Â

)∣∣∣ ∝ ∣∣∣R̂xx (λ) − R̂H
yx (λ) R̂−1

yy (λ) R̂yx (λ)
∣∣∣ , (56)

and the symbol ∝ means “proportional to”.
To derive the ML estimate of λ, we need to evaluate∣∣∣T(

λ, Â
)∣∣∣. Note that the term at the right hand side of (56)

is the Schur complement of [30]

R̂ (λ) =
[

R̂yy (λ) R̂yx (λ)
R̂H

yx (λ) R̂xx (λ)

]
. (57)

Since∣∣∣R̂ (λ)
∣∣∣∣∣∣R̂yy (λ)
∣∣∣ =

∣∣∣R̂xx (λ) − R̂H
yx (λ) R̂−1

yy (λ) R̂yx (λ)
∣∣∣ , (58)

we have

− ln f
(
λ, Â, Q̂ML

)
∝ J ln λ

K + 1
+ ln

∣∣∣R̂ (λ)
∣∣∣ − ln

∣∣∣R̂yy (λ)
∣∣∣ .
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From (57), (31), (32) and (33), it is shown that R̂ (λ) can be
separated into λ-dependent and λ-independent parts as

R̂ (λ) = λ−1R̂0 + R̂K , (59)

where R̂0 and R̂K are given by (22) and (23), respectively.
Note that R̂0 and R̂K are positive definite with probability 1
if N − P ≥ J(P + 1).

To differentiate the determinants of R̂ (λ) and R̂yy (λ) w.r.t.
λ, we have to resort to the following Lemma.

Lemma 1: Let E and F be M×M positive definite matrices.
Then

∂

∂λ
ln

∣∣λ−1E + F
∣∣ =

M∑
i=1

−1
λ (1 + λξi)

, (60)

where {ξi}M
i=1 are the eigenvalues of E− 1

2 FE−1
2 .

Proof:

∂

∂λ
ln

∣∣λ−1E + F
∣∣ =

∂

∂λ
ln

∣∣∣E 1
2

(
λ−1I + E−1

2 FE− 1
2

)
E

1
2

∣∣∣
=

∂

∂λ
ln

∣∣∣λ−1I + E− 1
2 FE− 1

2

∣∣∣
=

∂

∂λ
ln

[
M∏
i=1

(
λ−1 + ξi

)]

=
M∑
i=1

∂

∂λ
ln

(
1 + λξi

λ

)

=
M∑
i=1

−1
λ (1 + λξi)

, (61)

where we have used the fact that
{
λ−1 + ξi

}M

i=1
are the

eigenvectors of the matrix λ−1I + E−1
2 FE− 1

2 .
By applying Lemma 1, we get

∂

∂λ
ln

∣∣∣R̂ (λ)
∣∣∣ =

J(P+1)∑
i=1

−1
λ (1 + λμi)

, (62)

∂

∂λ
ln

∣∣∣R̂yy (λ)
∣∣∣ =

JP∑
i=1

−1
λ (1 + λυi)

, (63)

where μi and υi are eigenvalues of the matrices R̂− 1
2

0 R̂KR̂− 1
2

0

and R̂− 1
2

0,y R̂K,yR̂
− 1

2
0,y , respectively, and R̂0,y and R̂K,y are

given by (24) and (25). Following that, the ML estimate of
λ, denoted as λ̂, is shown to be the root of (21). As a result,
the ML estimates of Q and A are given by (51) and (54),
which are obtained by replacing λ with λ̂.

B. Derivation of the SI-PRao Test

From (45), the elements of the first partial derivative of the
log likelihood ln f with respect to θr in (42) are

∂ ln f (θ)
∂θr

=

[
∂ ln f(θ)

∂αR
∂ ln f(θ)

∂αI

]
, (64)

with

∂ ln f (θ)
∂αR

=
1
λ

N−1∑
n=P

[
s̃H (n)Q−1ε0 (n) + εH

0 (n)Q−1s̃ (n)
]
,

∂ ln f (θ)
∂αI

=
j

λ

N−1∑
n=P

[
s̃H (n)Q−1ε0 (n) − εH

0 (n)Q−1s̃ (n)
]
.

Since the term
[
I−1 (θ)

]
θr ,θr

is related to the FIM, we first
find relevant entries of the FIM:

E

{
∂2 ln f (θ)

∂α2
R

}
= − 2

λ

N−1∑
n=P

s̃H (n)Q−1s̃H (n) ,

E

{
∂2 ln f (θ)

∂α2
I

}
= − 2

λ

N−1∑
n=P

s̃H (n)Q−1s̃H (n) ,

E

{
∂2 ln f (θ)
∂αR∂αI

}
=0,

E

{
∂2 ln f (θ)
∂αI∂αR

}
=0,

Iθr ,θs (θ) =0,

Iθs,θr (θ) =0.

As a result, (43) reduces to

[
I−1 (θ)

]
θr,θr

=
λ

2
N−1∑
n=P

s̃H (n)Q−1s̃ (n)

[
1 0
0 1

]
(65)

Since

∂ ln f (θ)
∂αR

∣∣
θ=θ̃

=
1

λ̂

N−1∑
n=P

[
s̃H (n) Q̂−1x̃0 (n) + x̃H

0 (n) Q̂−1s̃ (n)
]
, (66)

∂ ln f (θ)
∂αI

∣∣
θ=θ̃

=
j

λ̂

N−1∑
n=P

[
s̃H (n) Q̂−1x̃0 (n) − x̃H

0 (n) Q̂−1s̃ (n)
]
, (67)

the general Rao test in (42) reduces to (20).
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